FRENIC-Ace New

The Next Generation Of Inverters Have Arrived

Introducing Our New Standard Inverter!

Enjoy A Full Range Of Applications

The standard inverter for the next generation, the FRENIC-Ace, can be used in most types of application-from fans and pumps to specialized machinery.

*3-phase 200V series supports only a product for Asia.

Customizable Logic

Customizable logic function is available as a standard feature. FRENIC-Ace has built-in customizable logic functions with a maximum of 200 steps including both digital and analog operation functions, giving customers the ability to customize their inverters-from simple logic functions to full-scale programming. Fuji Electric also has plans to offer programming templates for wire drawing machines, hoists, spinning machines, and other applications so that the FRENIC-Ace can be used as a dedicated purpose inverter.

Example: Hoist crane application

Programming the FRENIC-Ace main unit with the required logic for controlling a hoist
(1) Set speed program
(2) Reset the alarm by using the push-button switch
(3) Mechanical limit switch function
(4) Detect load
(5) Automatic speed drive when no load is detected
Dedicated/specialized functions for
hoist application implemented by
using customizable logic

(1) Superior Flexibility

FRENIC-Ace has readily available interface cards and various types of fieldbus / network to maximize its flexibility.

Option	Installation type
RS485 communications card PG interface (5 V) card PG interface (12/15V) card	
DeviceNet communication card CC-Link communication card PROFIBUS-DP communication card (Coming Soon) EtherNet/IP communication card (Coming Soon) ProfiNet-RT communication card (Coming Soon) CANopen communication card (Coming Soon) Digital input/output interface card Analog input/output interface card	

(6) Overload stop function

(6)
 Multi-Function Keypad (option)

FRENIC-Ace has two different multi-function keypads available

- Multi-function keypad with LCD display: Enhanced HMI functionality
- USB keypad: Connect to a computer for more efficient operation (set-up, troubleshooting, maintenance, etc)

Multi-function keypad with LCD screen

USB keypad

Functional Safety

FRENIC-Ace is equipped with STO functional safety function as a standard. Therefore output circuit magnetic contactors are not required for safe stop implementation. Enhanced standard features position FRENIC-Ace ahead of its class (Safety input: 2CH, output: 1CH).

-Complies with (coming soon)

EN ISO 13849-1: 2008, Cat. 3 / PL=e
IEC/EN 61800-5-2: 2007 SIL3 (Safety feature: STO)
IEC/EN 60204-1: 2005/2006 Stop category 0
IEC/EN 61508-1 to -7: 2010 SIL3

10 Years Lifetime Design

FRENIC-Ace components have a design life of ten years.
A longer maintenance cycle also helps to reduce running costs.

Design life	Main circuit capacitor		10 years*
	Electrolytic capacitors on PCB		10 years*
	Cooling fan		10 years*
	Life conditions	Ambient temperature	$+40^{\circ} \mathrm{C}$
		Load rate	100\% (HHD specifications) 80\% (HND/HD/ND specifications)

* ND specifications have a rated current of two sizes higher than HHD specifications, so the life is 7 years.

Standards

\square RoHS Directive

Standard compliance with European regulations that limit the use of specific hazardous substances (RoHS)

<Six hazardous	Lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyl
substances>	(PBB), polybrominated biphenyl ether (PBDE)

[^0]Global Compliance
Standard compliance

Standard Model Specifications

Three phase 400V class series

Items			Specifications										
Type (FRN $\square \square \square$ E2 $\square-4 E)$ ¹0, (FRN $\square \square \square$ E2S-AA), (FRN $\square \square \square$ E2S-K(0022~), (FRN $\square \square \square$ E2S-G (0002~0012)			0002	0004	0006	0007	0012	0022	0029	0037	0044	0059	0072
Nominal applied motor ${ }^{11}$ [kW]		ND	0.75	1.5	2.2	3.0	5.5	11	15	18.5	22	30	37
		HD	0.75	1.1	2.2	3.0	5.5	7.5	11	15	18.5	22	30
		HND	0.75	1.1	2.2	$3.0{ }^{11}$	$5.5{ }^{11}$	7.5	11	15	18.5	22	30
		HHD	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
Output ratings	Rated capacity [$\mathrm{KVA}^{\text {] }}$ 2	ND	1.6	3.1	4.2	5.3	9.1	16	22	28	34	45	55
		HD	1.4	2.6	3.8	4.8	8.5	13	18	24	29	34	46
		HND	1.4	2.6	3.8	$4.8{ }^{11}$	$8.5^{* 11}$	13	18	24	29	34	46
		HHD	1.1	1.9	3.2	4.2	6.9	9.9	14	18	23	30	34
	Rated voltage [V] ${ }^{\text {3 }}$		Three-phase 380 to 480 V (With AVR)										
	Rated current [A] ${ }^{\text {/4 }}$	ND	2.1	4.1	5.5	6.9	12	21.5	28.5	37.0	44.0	59.0	72.0
		HD	1.8	3.4	5.0	6.3	11.1	17.5	23.0	31.0	38.0	45.0	60.0
		HND	1.8	3.4	5.0	$6.3{ }^{11}$	$11.1{ }^{11}$	17.5	23.0	31.0	38.0	45.0	60.0
		HHD	1.5	2.5	4.2	5.5	9.0	13.0	18.0	24.0	30.0	39.0	45.0
	Overload capability	ND, HND	120\% of nominal current for 1 min										
		HD	150\% of nominal current for 1 min										
		HHD	150% of nominal current for 1 min or 200% of nominal current for 0.5 s										
Input ratings	Main power supply		Three-phase 380 to 480V (With AVR)										
	Voltage/frequency variations		Voltage: +10 to -15% (Voltage unbalance:2\% or less ${ }^{88}$, Frequency: +5 to -5%)										
	Rated current without DCR ${ }^{5}$ [A]	ND	2.7	4.8	7.3	11.3	16.8	33.0	43.8	52.3	60.6	77.9	94.3
		HD	2.7	3.9	7.3	11.3	16.8	23.2	33.0	43.8	52.3	60.6	77.9
		HND	2.7	3.9	7.3	$11.3{ }^{\text {¹1 }}$	$16.8{ }^{\text {¹1 }}$	23.2	33.0	43.8	52.3	60.6	77.9
		HHD	1.7	3.1	5.9	8.2	13.0	17.3	23.2	33.0	43.8	52.3	60.6
	Rated current with DCR ${ }^{5}[A]$	ND	1.5	2.9	4.2	5.8	10.1	21.1	28.8	35.5	42.2	57.0	68.5
		HD	1.5	2.1	4.2	5.8	10.1	14.4	21.1	28.8	35.5	42.2	57.0
		HND	1.5	2.1	4.2	5.8 .11	10.1^{11}	14.4	21.1	28.8	35.5	42.2	57.0
		HHD	0.85	1.6	3.0	4.4	7.3	10.6	14.4	21.1	28.8	35.5	42.2
	Required power supply capacity ${ }^{\text {* }}$ [kVA]	ND	1.1	2.1	3.0	4.1	7.0	15	20	25	29	39	47
		HD	1.1	1.5	3.0	4.1	7.0	10	15	20	25	29	39
		HND	1.1	1.5	3.0	$4.1{ }^{111}$	7.0 ${ }^{11}$	10	15	20	25	29	39
		HHD	0.6	1.2	2.1	3.1	5.1	7.3	10	15	20	25	29
Braking	Braking torque ${ }^{7}$ [\%]	ND	53\%	50\%	48\%	29\%	27\%	12\%					
		HD	53\%	68\%	48\%	29\%	27\%	15\%					
		HND	53\%	68\%	48\%	29\% ${ }^{+11}$	27\% ${ }^{11}$	15\%					
		HHD	100\%		70\%	40\%		20\%					
	DC braking		Starting frequency: 0.0 to 60.0 Hz , Braking time: 0.0 to 30.0 s , Braking level: 0 to 60% (ND spec.), 0 to 80% (HD/HND spec.), 0 to 100% (HHD spec.) of nominal current										
	Braking chopper		Built-in										
	Braking resistor		Option										
EMC filter ${ }^{\text {² }}$								Compliant with EMC Directives, Emission and Immunity: Category C3 (2nd Env.) (EN61880-3:32004)					
DC reactor (DCR)		ND	Option										
		HND, HD	Option										
		HHD	Option										
Enclosure (IEC60529)			IP20, UL open type										
Cooling method			Natural cooling		Fan cooling								
Mass (Basic Type (EMC Filter Built-in Type)) [kg]			1.2	1.5	1.5	1.6	1.9	5.0(TBD)	5.0(TBD)	8.0(TBD)	9.0(TBD)	9.5(10.5)	10(11.2)

Fuji 4-pole standard motor
Rated capacity is calculated by assuming the output rated voltage as 440 V .
Output voltage cannot exceed the power supply voltage.
4 When the carrier frequency (F26) is set to below value or higher, the inverter is sure to be necessary to derate their nominal current.
HHD spec.---type 0002 to $0012: 8 \mathrm{kHz}$, type 0022 to $0168: 10 \mathrm{kHz}$, type 0203 to $0590: 6 \mathrm{kHz}$
HND spec.---type 0002 to $0012: 8 \mathrm{kHz}$, type 0022 to $0059: 10 \mathrm{kHz}$, type 0072 to $0168: 6 \mathrm{kHz}$, type 0203 to $0590: 4 \mathrm{kHz}$
HD,ND spec.---All type : 4kHz
The rated output current at $\mathrm{HD} / \mathrm{ND}$ spec. is decreased 2% for every $1^{\circ} \mathrm{C}\left(1.8{ }^{\circ} \mathrm{F}\right)$ when ambient temperature is $+40^{\circ} \mathrm{C}\left(+104{ }^{\circ} \mathrm{F}\right)$ or more.
*5 The value is calculated assuming that the inverter is connected with a power supply with
the capacity of 500 kVA
(or 10 times the inverter capacity if the inverter capacity exceeds 50 kVA) and $\% \mathrm{X}$ is 5%. Be sure to use the DCR when applicable motor capacity is 75 kW or above.

6 Obtained when a DC reactor (DCR) is used
${ }^{*} 7$ Average braking torque for the motor running alone. (It varies with the efficiency of he motor.
*8 Voltage unbalance $(\%)=($ Max. voltage (V) - Min. voltage (V))/Three -phase average voltage $(\mathrm{V}) \times 67$ (IEC $61800-3$) If this value is 2 to 3%, use an optional AC reactor (ACR)
*9 The EMC Filter Built-in Type supports only a product for EU.
${ }^{*} 10$: S: Standard (basic type), E: EMC filter built-in type (0059 to 0590)
*11 HND spec. of the type 0007 and 0012 : allowable ambient temperature $40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$ or less.
The rated output current at HND spec. is decreased 1% for every $1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ when
ambient temperature is $+40^{\circ} \mathrm{C}\left(+104{ }^{\circ} \mathrm{F}\right)$ or more.
*12 : A: 1 CAN terminal, 1 analog current output
B: NONE CAN terminal, 2 analog current output

Standard Model Specifications

Three phase 400V class series

Items			Specifications										
Type (FRN $\square \square \square \mathrm{E} 2 \square-4 \mathrm{E}){ }^{\text {¹1 }}$(FRN $\square \square \square \mathrm{E} 2 \mathrm{~S}-4 \mathrm{~A})$			0085	0105	0139	0168	0203	0240	0290	0361	0415	0520	0590
Nominal applied motor ${ }^{11}$ [kW]		ND	45	55	75	90	110	132	160	200	220	280	315
		HD	37	45	55	75	90	110	132	160	200	220	250
		HND	37	45	55	75	90	110	132	160	200	220	280
		HHD	30	37	45	55	75	90	110	132	160	200	220
Output ratings	Rated capacity [KVA] ${ }^{2}$	ND	65	80	106	128	155	183	221	275	316	396	450
		HD	57	69	85	114	134	160	193	232	287	316	364
		HND	57	69	85	114	134	160	193	232	287	316	396
		HHD	46	57	69	85	114	134	160	193	232	287	316
	Rated voltage [V] ${ }^{\text {+3}}$		Three-phase 380 to 480 V (With AVR)										
	Rated current [$A]^{\text {² }}$	ND	85.0	105	139	168	203	240	290	361	415	520	590
		HD	75.0	91.0	112	150	176	210	253	304	377	415	477
		HND	75.0	91.0	112	150	176	210	253	304	377	415	520
		HHD	60.0	75.0	91.0	112	150	176	210	253	304	377	415
	Overload capability	ND, HND	120\% of nominal current for 1 min										
		HD	150% of nominal current for 1 min										
		HHD	150% of nominal current for 1 min or 200% of nominal current for 0.5 s										
Input ratings	Main power supply		Three-phase 380 to 480V (With AVR)		Three-phase 380 to 480V, 50/60Hz		Three-phase 380 to $440 \mathrm{~V}, 50 \mathrm{~Hz}$ Three-phase 380 to $480 \mathrm{~V}, 60 \mathrm{~Hz}{ }^{\text {² }}$						
	Voltage/frequency variations		Voltage: +10 to -15\% (Voltage unbalance:2\% or less ${ }^{*}$, Frequency: +5 to -5%)										
	Rated current without DCR ${ }^{5}$ [A]	ND	114	140	-	-	-	-	-	-	-	-	-
		HD	94.3	114	140	-	-	-	-	-	-	-	-
		HND	94.3	114	140	-	-	-	-	-	-	-	-
		HHD	77.9	94.3	114	140	-	-	-	-	-	-	-
	Rated current with DCR ${ }^{5}[\mathrm{~A}]$	ND	83.2	102	138	164	201	238	286	357	390	500	559
		HD	68.5	83.2	102	138	164	201	238	286	357	390	443
		HND	68.5	83.2	102	138	164	201	238	286	357	390	500
		HHD	57.0	68.5	83.2	102	138	164	201	238	286	357	390
	Required power supply capacity ${ }^{\text {6 }}$ [kVA]	ND	58	71	96	114	139	165	199	248	271	347	388
		HD	47	58	71	96	114	140	165	199	248	271	307
		HND	47	58	71	96	114	140	165	199	248	271	347
		HHD	39	47	58	71	96	114	140	165	199	248	271
Braking	Braking torque ${ }^{7}$ [\%]	ND	5 to 9\%										
		HD	7 to 12\%										
		HND	7 to 12\%										
		HHD	10 to 15\%										
	DC braking		Starting frequency: 0.0 to 60.0 Hz , Braking time: 0.0 to 30.0 s , Braking level: 0 to 60% (ND spec.), 0 to 80% (HD/HND spec.), 0 to 100% (HHD spec.) of nominal current										
	Braking chopper		Option										
	Braking resistor		Option										
EMC filter ${ }^{10}$			Compliant with EMC Directives, Emission and Immunity: Category C3 (2nd Env.) (EN61800-3:2004)										
DC reactor (DCR)		ND	Option		Attached as standard								
		HND, HD	Option			Attached as standard							
		HHD	Option				Attached as standard						
Enclosure (IEC60529)			IP00, UL open type										
Cooling method			Fan cooling										
Mass (Basic Type (EMC Filter Built-in Type)) [kg]			25(26)	26(27)	30(31)	33(33)	40(40)	62(62)	63(63)	95(95)	96(96)	130(130)	140(140)

1 Fuii 4-pole standard motor
2 Rated capacity is calculated by assuming the output rated voltage as 440 V .
3 Output voltage cannot exceed the power supply voltage.
When the carrier frequency (F26) is set to below value or higher, the inverter is sure to be necessary to derate their nominal current
HHD spec.---type 0002 to $0012: 8 \mathrm{kHz}$, type 0022 to $0168: 10 \mathrm{kHz}$, type 0203 to $0590: 6 \mathrm{kHz}$
HND spec.---type 0002 to $0012: 8 \mathrm{kHz}$, type 0022 to 0059 : 10kHz, type 0072 to $0168: 6 \mathrm{kHz}$, type 0203 to $0590: 4 \mathrm{kHz}$ HD,ND spec.---All type : 4kHz
The rated output current at $\mathrm{HD} / \mathrm{ND}$ spec. is decreased 2% for every $1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ when ambient temperature is $+40^{\circ} \mathrm{C}\left(+104{ }^{\circ} \mathrm{F}\right)$ or more
*5 The value is calculated assuming that the inverter is connected with a power supply with the capacity of 500 kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50 kVA) and $\% \mathrm{X}$ is 5%. Be sure to use the DCR when applicable motor capacity is 75 kW or above.
6 Obtained when a DC reactor (DCR) is used.
${ }^{6}$ Average braking torque for the motor running alone. (It varies with the efficiency of the motor.)

* 8 Voltage unbalance (\%) $=($ Max. voltage $(N)-$ Min. voltage (V))/Three -phase average voltage $(V) \times 67$ (IEC $61800-3$) If this value is 2 to 3%, use an optional $A C$ reactor (ACR).

9 The 400 V class series with type 0203 or above is equipped with a set of switching connectors (male) which should be configured according to the power source voltage and frequency.

[^1]
Standard Model Specifications

Three phase 200V class series (Basic Type)

Items			Specifications												
			0001	0002	0004	0006	0010	0012	0020	0030	0040	0056	0069	0088	0115
Nominal applied motor ${ }^{11}$ [kW]		HND	0.2	0.4	0.75	1.1	2.2	$3.0{ }^{11}$	$5.5{ }^{11}$	7.5	11	15	18.5	22	30
		HHD	0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
Output ratings	Rated capacity [KVA$]^{2}$	HND	0.5	0.8	1.3	2.3	3.7	$4.6{ }^{+11}$	7.5^{11}	11	15	21	26	34	44
		HHD	0.3	0.6	1.1	1.9	3.0	4.2	6.7	9.5	13	18	23	29	34
	Rated voltage [V] ${ }^{\text {/3 }}$		Three-phase 200 to 240 V (With AVR)												
	Rated current [A] ${ }^{\text {/4 }}$	HND	1.3	2.0	3.5	6.0	9.6	12^{11}	$19.6{ }^{\text {¹1 }}$	30	40	56	69	88	115
		HHD	0.8	1.6	3.0	5.0	8.0	11	17.5	25	33	47	60	76	90
	Overload capability	HND	120\% of nominal current for 1 min												
		HHD	150% of nominal current for 1 min or 200% of nominal current for 0.5 s												
Input ratings	Main power supply		Three-phase 200 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$												
	Voltage/frequency variations		Voltage: +10 to -15% (Voltage unbalance:2\% or less ${ }^{* 8}$, Frequency: +5 to -5%)												
	Rated current without DCR ${ }^{55}$ [A]	HND	1.8	2.6	4.9	6.7	12.8	$17.9{ }^{\text {+11 }}$	31.9^{+11}	42.7	60.7	80.0	97.0	112	151
		HHD	1.1	1.8	3.1	5.3	9.5	13.2	22.2	31.5	42.7	60.7	80.0	97.0	112
	Rated current with DCR ${ }^{5}$ [A]	HND	0.93	1.6	3.0	4.3	8.3	$11.7{ }^{11}$	$19.9{ }^{\text {¹1 }}$	28.8	42.2	57.6	71.0	84.4	114
		HHD	0.57	0.93	1.6	3.0	5.7	8.3	14.0	21.1	28.8	42.2	57.6	71.0	84.4
	Required power supply capacity ${ }^{\text {6 }}[\mathrm{kVA}]$	HND	0.4	0.6	1.1	1.5	2.9	4.1^{111}	$6.9{ }^{+11}$	10	15	20	25	30	40
		HHD	0.2	0.4	0.6	1.1	2.0	2.9	4.9	7.3	10	15	20	25	30
Braking	Braking torque ${ }^{7}$ [\%]	HND	75\%		53\%	68\%	48\%	29\% ${ }^{11}$	27\% ${ }^{+11}$	15\%					
		HHD	150\%		100\%		70\%	40\%		20\%					
	DC braking		Starting frequency: 0.0 to 60.0 Hz , Braking time: 0.0 to 30.0 s , Braking level: 0 to 60% (ND spec.), 0 to 80% (HD/HND spec.), 0 to 100% (HHD spec.) of nominal current												
	Braking chopper		Built-in												
	Braking resistor		Option												
DC reactor (DCR)		HND	Option												
		HHD	Option												
Enclosure (IEC60529)			IP20, UL open type												
Cooling method			Naturalural cool				Fan cooling								
Mass [kg]			0.5	0.5	0.6	0.8	1.5	1.5	1.8	5.0	5.0	8.0	9.0	9.5	10

1 Fuji 4-pole standard motor
Rated capacity is calculated by assuming the output rated voltage as 220 V
Output voltage cannot exceed the power supply voltage.
When the carrier frequency (F26) is set to below value or higher, the inverter is sure to be necessary to derate their nominal current
HHD spec.---type 0001 to $0020: 8 \mathrm{kHz}$, type 0030 to $0115: 10 \mathrm{kHz}$,
HND spec.---type 0001 to $0020: 4 \mathrm{kHz}$, type 0030 to $0069: 10 \mathrm{kHz}$, type $0088,0115: 4 \mathrm{kHz}$
5 The value is calculated assuming that the inverter is connected with a power supply with the capacity of 500 kVA
(or 10 times the inverter capacity if the inverter capacity exceeds 50 kVA) and $\% \mathrm{X}$ is 5%.
Obtained when a DC reactor (DCR) is used.
Average braking torque for the motor running alone. (It varies with the efficiency of the motor.)
Voltage unbalance (\%) $=($ Max. voltage $(\mathrm{V})-$ Min. voltage (V))/Three -phase average voltage $(\mathrm{V}) \times 67$ (IEC 61800-3)
If this value is 2 to 3%, use an optional AC reactor (ACR).
9 Three phase 200 V class series supports only a product for Asia
HND spec. of the type 0012 and 0020: allowable ambient temperature $40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$ or less.
The rated output current at HND spec. is decreased 1% for every $1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ when ambient temperature is $+40^{\circ} \mathrm{C}\left(+104{ }^{\circ} \mathrm{F}\right)$ or more
B: NONE CAN terminal 2 analog current output
B: NONE CAN terminal, 2 analog current output

Common Specifications

Common Specifications

Frequency limiter
(Upper limit and lower
Bias for frequency/ PID command

Analog input

frequency

Jogging operation
Auto-restart after momentary power
p at power failure) (Deceleration stop)
(Continue to run)
before momentary power failure)

Setting range: From 0.00 to 6000 s during operation).

- Acceleration/deceleration pattern: Linear acceleration/deceleration, S-shape acceleration/deceleration (weak, free (set by function codes)), curvilinear acceleration/deceleration
mas to a stop.
to 6000 s S-curve will be canceled during "Force to Stop"
- Specifies the upper and lower limits in Hz .
- Selectable for the operation performed when the reference frequency drops below the lower limit specified by

Bias of set frequency and PID command can be independently set(setting range: 0 to $\pm 100 \%$).
Gain : Set in the range from 0 to 200\%
Off-set : Set in the range from -5.0 to $+5.0 \%$
Polarity : Sel from or 0.00 so 5.00 s

Three operation points and their common jump width (0.0 to 30.0 Hz) can be set.

- Operate and stop by the time set with keypad. (1 cycle operation)

FWD or REV.(Exclusive acceleration/deceleration time setting, exclusive frequency setting)

The inverter trips immediately after power failure
Coast-to-stop at power failure and trip at power recovery
Deceleration stop at power failure, and trip after stoppage

Coast-to-stop at power
failure and start after power recovery at the frequency selected before momentary stop.

Common Specifications

Common Specifications

Common Specifications

*Note : The meaning of the described abbreviations are shown as follows.

$$
\text { VF } \quad \text { V/f control }
$$

IM-SVC(DTV) Speed sensorless vector control (Dynamictorquevector control)
VF with SC V/f control with slip compensation
IMPG-VF V/f control with speed sensor (The PG option card is required.)
IMPG-ATB V/f control with speed sensor (+Auto Torque Boost)(The PG option card is required.)
IMPG-VC Vector control with speed sensor (The PG option card is required.)
PM-SVC
Magnetic pole position sensorless vector control

Basic Wiring Diagram

Standard Terminal Block Board Model

MCCB: Molded case circuit braker

```
DBR: Dynamic Braking Resister
DBR: Dynamic Braking Resister
DCR: DC reactor
DCR: DC reactor
RCD: Residual-current-operated protective device
RCD: Residual-current-operated protective device
ELCB: Earth leakage circuit breaker
ELCB: Earth leakage circuit breaker
MC: Magnetic contactor
MC: Magnetic contactor
MCCB: Molded case circuit braker
MCCB: Molded case circuit braker
*1 When connecting an optional DC reactor (DCR), remove the jumper bar from the terminals P 1 and \(\mathrm{P}(+)\). The type 0139 (ND spec), 0168 (HD spec.) and higher types than 0203 are sure to connect the DCR (400V only). Use a DCR when the capacity of the power supply transformer exceeds 500 kVA and is 10 times or more the inverter rated capacity, or when there are thyristor-driven loads in the same power supply line.

This wiring diagram is to be used as a reference only when using standard terminal block model.
NOTE When wiring your inverter and/or before applying power, please always follow the connection diagrams and the relevant information written in the User's Manual.

\section*{Basic Wiring Diagram}

\section*{Standard Terminal Block Board Model}

\section*{FRN \(\square \square \square E 2 \square\)-OGB}

In case of the standard terminal block type B
(without built-in CAN communication port and with dual Analog outputs)

```

DBR: Dynamic Braking Resister
DCR: DC reactor
RCD: Residual-current-operated protective device
ELCB: Earth leakage circuit breaker
MC: Magnetic contactor
MCCB:Molded case circuit braker
MCCB: Molded case circuit braker

```
*1 When connecting an optional DC reactor (DCR), remove the jumper bar from the terminals P1 and P(+). The type 0139 (ND spec), 0168 (HD spec.) and higher types than 0203 are sure to connect the DCR ( 400 V only) Use a DCR when the capacity of the power supply transformer exceeds 500 kVA and is 10 times or more the inverter rated capacity, or when there are thyristor-driven loads in the same power supply line.
2 The default setting is "Source logic" for EU model.

This wiring diagram is to be used as a reference only when using standard terminal block model.
When wiring your inverter and/or before applying power, please always follow the connection diagrams and the relevant information written in the User's Manual.

\section*{Terminal Functions}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{|c|}
\hline\(\stackrel{\rightharpoonup}{\circ}\) \\
\hline ¢ \\
¢ \\
\hline 0
\end{tabular} & Symbol & Name & Functions & Remarks \\
\hline \multirow{8}{*}{} & L1/R, L2/S,L3/T & Main circuit power inputs & Connect the three-phase input power lines. & \\
\hline & RO, T0 & Auxiliary power input for the control circuit & For a backup of the control circuit power supply, connect AC power lines same as that of the main power input. & Type 0059 or above (400V only) \\
\hline & R1, T1 & Auxiliary power input for the cooling fans & Normally, no need to use these terminals.Use these terminals for an auxiliary power input of the fans in a power system using a power regenerative PWM converter. & Type 0203 or above (400V only) \\
\hline & U, V, W & Inverter outputs & Connect a three-phase motor. & \\
\hline & \(\mathrm{P}(+), \mathrm{P} 1\) & For DC REACTOR connection & Connects a DC REACTOR & \\
\hline & \(\mathrm{P}(+), \mathrm{N}(-)\) & For BRAKING UNIT connection/For DC bus & Connects a braking resistor via the braking unit. Used for a DC bus connection system. & \\
\hline & \(\mathrm{P}(+)\), DB & Braking resistor & Connect an external braking resistor (option). & Type 0072 or below (400V series) Type 0069 or below (200V series) \\
\hline & (-G) & Grounding for inverter & Grounding terminals for the inverter. & \\
\hline & [13] & Power supply for the potentiometer & \begin{tabular}{l}
Power supply (+10 VDC) for frequency command potentiometer (Variable resistor : 1 to \(5 \mathrm{k} \Omega\) is applicable). \\
The potentiometer of \(1 / 2 \mathrm{~W}\) rating or more should be connected.
\end{tabular} & Maximum supply rating : 10 VDC, 10 mADC . \\
\hline \multirow[t]{5}{*}{} & & \multirow[t]{5}{*}{\begin{tabular}{l}
Analog setting voltage input \\
<Normal operation> \\
<Inverse operation> \\
(PID control) \\
(Auxiliary frequency setting)
\end{tabular}} & - External input voltage to be used as a below command. & \multirow[t]{5}{*}{\begin{tabular}{l}
Input impedance : \(22 \mathrm{k} \Omega\) Maximum input level : \(\pm 15\) VDC Input level is limited among -10 to 10 VDC regardless of excessive input of \(\pm 10\) VDC. \\
Gain : 0 to 200\% \\
Offset : 0 to \(\pm 5 \%\) \\
Bias: \(\pm 100 \%\) \\
Filter : 0.00 to 5.00 s
\end{tabular}} \\
\hline & & & 0 to +10 VDC \(/ 0\) to \(100 \%\) ( 0 to +5 VDC / 0 to 100\%) 0 to \(\pm 10 \mathrm{VDC} / 0\) to \(\pm 100 \%\) ( 0 to \(\pm 5 \mathrm{VDC} / 0\) to \(\pm 100 \%\) ) & \\
\hline & [12] & & \begin{tabular}{l}
+10 to 0 to \(-10 \mathrm{VDC} /-100 \%\) to 0 to \(100 \%\) \\
-10 V to 0 to \(+10 \mathrm{VDC} /+100 \%\) to 0 to \(-100 \%\)
\end{tabular} & \\
\hline & & & -Use as PID command value or PID feedback signal. & \\
\hline & & & -Use as additional auxiliary setting to various frequency setting. & \\
\hline \multirow{11}{*}{} & \multirow[t]{5}{*}{(C1)} & \multirow[t]{5}{*}{\begin{tabular}{l}
Analog setting current input \\
<Normal operation> \\
<Inverse operation> \\
(PID control) \\
(Auxiliary frequency setting)
\end{tabular}} & -External input voltage to be used as a below command. & \multirow[t]{5}{*}{\begin{tabular}{l}
Input impedance: \(250 \Omega\) Maximum input 30 mADC Input level is limited up to 20 mADC regardless of excessive input of 20 mADC . \\
Gain: 0 to 200\% \\
Offset: 0 to \(\pm 5 \%\) \\
Bias: \(\pm 100 \%\) \\
Filter: 0.00 to 5.00 s
\end{tabular}} \\
\hline & & & 4 to \(20 \mathrm{mADC} / 0\) to \(100 \% /-100 \%\) to 0 to \(100 \%\) (*1) 0 to \(20 \mathrm{mADC} / 0\) to \(100 \% /-100 \%\) to 0 to \(100 \%\) (*1) & \\
\hline & & & 20 to 4 mADC / 0 to \(100 \% /-100 \%\) to 0 to \(100 \%\) (*1) 20 to \(0 \mathrm{mADC} / 0\) to \(100 \% /-100 \%\) to 0 to \(100 \%\) (*1) & \\
\hline & & & -Use as PID command value or PID feedback signal. & \\
\hline & & & -Use as additional auxiliary setting to various frequency setting. & \\
\hline & \multirow[t]{5}{*}{(V2)} & \multirow[t]{5}{*}{\begin{tabular}{l}
Analog setting current input \\
<Normal operation> \\
<Inverse operation> \\
(PID control) \\
(Auxiliary frequency setting1,2)
\end{tabular}} & -External input voltage to be used as a below command. & \multirow[t]{5}{*}{\begin{tabular}{l}
Input impedance: \(22 \mathrm{k} \Omega\) Maximum input \(\pm 15\) VDC Input level is limited among -10 to 10 VDC regardless of excessive input of \(\pm 10\) VDC. \\
Gain: 0 to 200\% \\
Offset: 0 to \(\pm 5 \%\) \\
Bias: \(\pm 100 \%\) \\
Filter: 0.00 to 5.00 s
\end{tabular}} \\
\hline & & & 0 to \(+10 \mathrm{VDC} / 0\) to \(100 \% /-100\) to 0 to \(100 \%\) ( 0 to \(+5 \mathrm{VDC} / 0\) to100\%) 0 to \(+10 \mathrm{VDC} / 0\) to \(\pm 100 \% /-100\) to 0 to \(100 \%\) (* \(^{*}\) ) ( 0 to \(+5 \mathrm{VDC} / 0\) to \(\pm 100 \%\) ) & \\
\hline & & & \begin{tabular}{l}
+10 to OVDC/0 to \(100 \% /-100 \%\) to 0 to \(100 \%\) \\
+10 to 0 VDC \(/ 0\) to \(\pm 100 \% /-100\) to 0 to \(100 \%\) (*1) ( +5 to 0 VDC/ 0 to \(\pm 100 \%\) )
\end{tabular} & \\
\hline & & & -Use as PID command value or PID feedback signal. & \\
\hline & & & -Use as additional auxiliary setting to various frequency setting. & \\
\hline & (PTC) & (PTC thermistor) & -PTC thermistor connection to protect the motor overheat. & \\
\hline & [11] & Analog common & Common terminals for analog input signals [12], [13], [C1], and analog output signals [FM]. & This terminal is electrically isolated from terminal [CM], [CMY]. \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& 0 \\
& 0 \\
& \frac{0}{N} \\
& \frac{0}{4} \\
& \hline
\end{aligned}
\]} & \multirow{4}{*}{\[
\begin{aligned}
& {[\mathrm{FM}]} \\
& {[\mathrm{FM} 2]^{-2}}
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Analog common \\
<Voltage output>(*3) \\
<Current output>(*3)
\end{tabular}} & \begin{tabular}{l}
The output can be either analog DC voltage ( 0 to 10 VDC), analog DC current (4(0) to 20 mADC ) or pulse train ( 25 to \(32000 \mathrm{p} / \mathrm{s}\) ). Any one item can be selected from the following items. \\
0 to +10 VDC / 0 to 100\% ( 0 to +5 VDC / 0 to 100\%) \\
Input impedance of the external device: Min. \(5 \mathrm{k} \Omega\) (at 0 to 10 VDC output) (While the terminal is outputting 0 to 10 VDC, it is capable of driving up to two analog voltmeters with \(10 \mathrm{k} \Omega\) impedance.)
\end{tabular} & \multirow{4}{*}{Gain: 0 to 300\%} \\
\hline & & & ```
4 to \(20 \mathrm{mADC} / 0\) to \(100 \%\)
0 to 20 mADC / 0 to \(100 \%\)
Input impedance of the external device: Max. \(500 \Omega\) (at \(4(0)\) to 20 mA DC output)
``` & \\
\hline & & Pulse monitor(*3) & \begin{tabular}{l}
Output form \\
Pulse output: 25 to \(32000 \mathrm{p} / \mathrm{s}\) at full scale, Pulse duty: approx. 50\%
\end{tabular} & \\
\hline & & Monitor data & \begin{tabular}{l}
-Output frequency1 (Before slip compensation) \\
- Output frequency2 (After slip compensation) \\
- Output current •Output voltage •Output torque \\
-Load factor -Input power -PID feedback amount (PV) \\
-Actual speed/Estimated speed •DC link bus voltage •Universal AO \\
- Motor output •Analog output calibration •PID command (SV) \\
-PID output (MV) •Position deviation in synchronous operation(The PG option card is required.) \\
-Customizable logic output 1 to 10 - Inverter cooling fin temperature \\
-PG feedback value (The PG option card is required.)
\end{tabular} & \\
\hline
\end{tabular}

\section*{Terminal Functions}

\section*{Terminal Functions}

\section*{Terminal Functions}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { 글 } \\
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & Symbol & Name & Functions & Remarks \\
\hline & RJ-45 connector for the keypad & Standard RJ-45 connector (RS-485 communication port 1) & \begin{tabular}{l}
(1) Used to connect the inverter with the keypad. The inverter supplies the power to the keypad through the pins specified below. The extension cable for remote operation also uses wires connected to these pins for supplying the keypad power. \\
(2) Remove the keypad from the standard RJ-45 connector, and connect the RS-485 communications cable to control the inverter through the PC or PLC (Programmable Logic Controller). \\
The protocol selection is available from the following. \\
- Modbus RTU \\
- Fuji general-purpose inverter protocol \\
- Asynchronous start-stop system • Half-duplex \\
- Max. transmission cable length : \(1640 \mathrm{ft}(500 \mathrm{~m})\) \\
- Maximum communication speed : 38.4 kbps
\end{tabular} & \\
\hline \(\bigcirc\) & \[
\begin{aligned}
& \text { [DX+], } \\
& \text { [DX-], } \\
& \text { [SD] }
\end{aligned}
\] & Standard RJ-45 connector (RS-485 communication port 2) (*4) & \begin{tabular}{l}
A communications port transmits data through the RS-485 multipoint protocol between the inverter and a personal computer or other equipment such as a PLC. \\
The protocol selection is available from the following. \\
- Modbus RTU \\
- Fuji general-purpose inverter protocol \\
- Asynchronous start-stop system • Half-duplex \\
- Max. transmission cable length : \(1640 \mathrm{ft}(500 \mathrm{~m})\) \\
- Maximum communication speed : 38.4 kbps
\end{tabular} & \\
\hline & [CAN+], [CAN-], [SHLD] & Standard RJ-45 connector (CAN communication port) (*5) & Commicication Profile: CiA CANOpen DS-301 and DSP-402 & \\
\hline
\end{tabular}

\footnotetext{
(*1) In case of applying bais/gain function
(*2) Only FRN \(\square \square \square \mathrm{E} 2 \square-\square \mathrm{GB}\) has the FM2 output. Not pulse monitor but analog monitor (voltage / current output) is available
\({ }^{*}{ }^{*}\)) Exclusive use. Need to swich on the terminal PCB.
(*4) In the RJ-45 connector on the terminal PCB.
(*5) In the RJ-45 connector on the terminal PCB. Concurrent use with RS-485 communications is not available.
}

\section*{Type}

How To Read The Model Number

\section*{External Dimensions}

- S: Standard (basic type), E: EMC filter built-in type (0059 to 0590)

External Dimensions

FRN0139E2■-4

■ : S: Standard (basic type), E: EMC filter built-in type (0059 to 0590)

External Dimensions

\section*{Options}

\section*{Adapter}
\begin{tabular}{|c|c|c|}
\hline Type & Option & Functions \\
\hline OPC-E2-ADP1 & \multirow{3}{*}{Mounting adapter for option card} & ADP1:The adapter is mounted on the front side of the inverter. The adapter is used from 0022 of 0044 to \(400 \mathrm{~V}, 0030\) of 0069 to 200 V to FRENIC-Ace. \\
\hline OPC-E2-ADP2 & & ADP2:The adapter is mounted inside of the inverter. The adapter is used from 0059 of 0072 to 400V to FRENIC-Ace. \\
\hline OPC-E2-ADP3 & & ADP3:The adapter is mounted inside of the inverter. The adapter is used in more than 0085 to 400V of FRENIC-Ace. \\
\hline
\end{tabular}

Communication, I/O Parts
\begin{tabular}{c|l|l}
\hline Type & \multicolumn{1}{|c}{ Option } & \multicolumn{1}{c}{ Functions } \\
\hline OPC-DEV & DeviceNet communications card & \begin{tabular}{l}
The DeviceNet interface option enables the FRENIC-Ace series of the inverters to interface with \\
DeviceNet and the FRENIC-Ace can be operated as a DeviceNet slave.
\end{tabular} \\
\hline OPC-CCL & CC-Link communications card & \begin{tabular}{l}
The CC-Link interface option enables the FRENIC-Ace series of the inverters to interface with \\
CC-Link and the FRENIC-Ace can be operated as a CC-Link slave.
\end{tabular} \\
\hline OPC-DIO & Digital I/O interface card & \begin{tabular}{l}
DI: The frequency set-point can be given by 8,12 bits and BCD code(0 to 99.9/0 to 999) and \\
extended 13 digital inputs are available mounting this card in the inverter. \\
DO: The monitoring with 8bit binary code and the digital outputs (extended 8 point) are available.
\end{tabular} \\
\hline OPC-AIO & Analog I/O interface card & \begin{tabular}{l}
The Analog I/O interface card enables the FRENIC-Ace series of the inverter to input analog \\
set-points to the inverter and output analog monitors from the inverter.
\end{tabular} \\
\hline
\end{tabular}
* Parts adapter is necessary on the occasion of setting.

\section*{Parts Using The Control Terminal Stand}
\begin{tabular}{|c|c|c|}
\hline Type & Option & Functions \\
\hline OPC-E2-RS & RS485 communications card & The RS-485 communications card provides two ports exclusively designed for use with the FRENIC-Ace series of the inverters. \\
\hline OPC-E2-PG & PG interface (5V) card & \begin{tabular}{l}
Speed control ,position control and synchronous drive are available mounting this card in the inverter. \\
- Open collector (pull-up resistor: \(620 \Omega\)): 30 kHz \\
- Complementary (totem-pole push-pull) \\
- Voltage output
\end{tabular} \\
\hline OPC-E2-PG3 & PG interface (12/15V) card & \begin{tabular}{l}
Speed control, position control and synchronous drive are available mounting this card in the inverter. \\
- Open collector (pull-up resistor: \(2350 \Omega\)): 30 kHz \\
- Complementary (totem-pole push-pull) \\
- Voltage output:100kHz
\end{tabular} \\
\hline
\end{tabular}

Keypad
\begin{tabular}{c|c|c}
\hline Type & Option & \\
\hline TP-A1-E2C & Multi-functional keypad & LCD(Liquid Crystal Display) with a back light. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{NEMAT KH} \\
\hline Power supply Voltage & Inverter type & Option type \\
\hline \multirow{13}{*}{Three-phase 400V} & FRN0059E2 - \({ }^{\text {- }}\) & \multirow{2}{*}{NEMA1-72E2-4} \\
\hline & FRN0072E2■-4\# & \\
\hline & FRN0085E2 - \({ }^{\text {- }}\) & \multirow[b]{2}{*}{NEMA1-105E2-4} \\
\hline & FRN0105E2 - \({ }^{\text {- }}\) & \\
\hline & FRN0139E2 - \({ }^{\text {a }}\) & \multirow{3}{*}{NEMA1-203E2-4} \\
\hline & FRN0168E2 - \({ }^{\text {- }}\) & \\
\hline & FRN0203E2 - \({ }^{\text {- }}\) & \\
\hline & FRN0240E2 - \({ }^{\text {- }}\) & \multirow[b]{2}{*}{NEMA1-110G1-4} \\
\hline & FRN0290E2 - 4\# & \\
\hline & FRN0361E2 - 4 \# & \multirow[b]{2}{*}{NEMA1-160G1-4} \\
\hline & FRN0415E2 - \({ }^{\text {- }}\) & \\
\hline & FRN0520E2 - 4\# & \multirow{2}{*}{NEMA1-590E2-4} \\
\hline & FRN0590E2 - \({ }^{\text {- }}\) & \\
\hline
\end{tabular}

Destination (A:for Asia, E:for Europe, K:for Korean)
■: S: Standard (basic type), E: EMC filter built-in type (0059 to 0590)

\section*{DC Reactor (DCR \(\square-\square \square \square\))}

Fig. A
Fig. B
Fig. C

: S: Standard (basic type), E: EMC filter built-in type (0059 to 0590)

\section*{NOTES}

When running general-purpose motors
- Driving a 400V general-purpose motor When driving a 400 V general-purpose motor with an inverter using extremely long cables, damage to the insulation of the motor may occur. Use an output circuit filter (OFL) if necessary after checking with the motor manufacturer. Fuji's motors do not require the use of output circuit filters because of their reinforced insulation.
- Torque characteristics and temperature rise When the inverter is used to run a general-purpose motor, the temperature of the motor becomes higher than when it is operated using a commercial power supply. In the low-speed range, the cooling effect will be weakened, so decrease the output torque of the motor. If constant torque is required in the low-speed range, use a Fuji inverter motor or a motor equipped with an externally powered ventilating fan

\section*{- Vibration}

When the motor is mounted to a machine, resonance may be caused by the natura frequencies, including that of the machine. Operation of a 2 -pole motor at 60 Hz or more may cause abnormal vibration.
* Study use of tier coupling or dampening rubber.
* It is also recommended to use the inverter jump frequency control to avoid resonance points.

\section*{- Noise}

When an inverter is used with a general-purpose motor, the motor noise level is higher than that with a commercial power supply. To reduce noise, raise carrier frequency of the inverter. High-speed operation at 60 Hz or more can also result in more noise.

\section*{When running special motors}

\section*{- Explosion-proof motors}

When driving an explosion-proof motor with an inverter, use a combination of a motor and an inverter that has been approved in advance.

\section*{- Brake motors}

For motors equipped with parallel-connected brakes, their braking power must be supplied from the primary circuit (commercial power supply). If the brake power is connected to the inverter power output circuit (secondary circuit) by mistake, problems may occur.
Do not use inverters for driving motors equipped with series-connected brakes.

\section*{- Geared motors}

If the power transmission mechanism uses an oillubricated gearbox or speed changer/reducer, then continuous motor operation at low speed may cause poor lubrication. Avoid such operation.

\section*{- Single-phase motors}

Single-phase motors are not suitable for inverterdriven variable speed operation. Use three-phase motors.

Environmental conditions
- Installation location

Use the inverter in a location with an ambient temperature range of -10 to \(50^{\circ} \mathrm{C}\).
The inverter and braking resistor surfaces become hot under certain operating conditions. Install the inverter on nonflammable material such as metal. Ensure that the installation location meets the environmental conditions specified in "Environment" in inverter specifications.

\section*{Combination with peripheral devices}
- Installing a molded case circuit breaker (MCCB)
Install a recommended molded case circuit breaker (MCCB) or an earth leakage circuit breaker (ELCB) in the primary circuit of each inverter to protect the wiring. Ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity.
- Installing a magnetic contactor (MC)
in the output (secondary) circuit
If a magnetic contactor (MC) is mounted in the inverter's secondary circuit for switching the motor to commercial power or for any other purpose, ensure that both the inverter and the motor are fully stopped before you turn the MC on or off. Remove the surge killer integrated with the MC.
- Installing a magnetic contactor (MC)
in the input (primary) circuit
Do not turn the magnetic contactor (MC) in the primary circuit on or off more than once an hour as an inverter fault may result. If frequent starts or stops are required during motor operation, use FWD/REV signals.

\section*{- Protecting the motor}

The electronic thermal facility of the inverter can protect the general-purpose motor. The operation level and the motor type (general-purpose motor, inverter motor) should be set. For high-speed motors or water-cooled motors, set a small value for the thermal time constant to protect the motor. If you connect the motor thermal relay to the motor with a long cable, a high-frequency current may flow into the wiring stray capacitance. This may cause the relay to trip at a current lower than the set value for the thermal relay. If this happens, lower the carrier frequency or use the output circuit filter (OFL).
- Discontinuance of power-factor correcting capacitor Do not mount power factor correcting capacitors in the inverter (primary) circuit. (Use the DC REACTOR to improve the inverter power factor.) Do not use power factor correcting capacitors in the inverter output circuit (secondary). An overcurrent trip will occur, disabling motor operation.
- Discontinuance of surge killer

Do not mount surge killers in the inverter output (secondary) circuit.

\section*{- Reducing noise}

Use of a filter and shielded wires are typical measures against noise to ensure that EMC Directives are met.

\section*{- Measures against surge currents}

If an overvoltage trip occurs while the inverter is stopped or operated under a light load, it is assumed that the surge current is generated by open/close of the phase-advancing capacitor in the power system.
We recommend connecting a DC REACTOR to the inverter.
- Megger test

When checking the insulation resistance of the inverter, use a 500 V megger and follow the instructions contained in the Instruction Manual.

\section*{Wiring}
- Wiring distance of control circuit

When performing remote operation, use the twisted shield wire and limit the distance between the inverter and the control box to 20 m .
- Wiring length between inverter and motor If long wiring is used between the inverter and the motor, the inverter will overheat or trip as a result of overcurrent (highfrequency current flowing into the stray capacitance) in the wires connected to the phases. Ensure that the wiring is shorter than 50 m . If this length must be exceeded, lower the carrier frequency or mount an output circuit filter (OFL).
When wiring is longer than 50 m , and sensorless vector control or vector control with speed sensor is selected, execute off-line tuning

\section*{-Wiring size}

Select cables with a sufficient capacity by referring to the current value or recommended wire size.

\section*{- Wiring type}

Do not use multicore cables that are normally used for connecting several inverters and motors.

\section*{- Grounding}

Securely ground the inverter using the grounding terminal.

\section*{Selecting inverter capacity}
- Driving general-purpose motor

Select an inverter according to the applicable motor ratings listed in the standard specifications table for the inverter. When high starting torque is required or quick acceleration or deceleration is required, select an inverter with a capacity one size greater than the standard.
- Driving special motors

Select an inverter that meets the following condition: Inverter rated current > Motor rated current.

\section*{Transportation and storage}

When transporting or storing inverters, follow the procedures and select locations that meet the environmental conditions that agree with the inverter specifications.

\section*{Fuji Electric Co., Ltd.}

Gate City Ohsaki, East Tower, 11-2,
Osaki 1-chome, Shinagawa-ku,
Tokyo 141-0032, Japan
Phone: +81-3-5435-7057 Fax: +81-3-5435-7420
URL: http://www.fujielectric.com/```

[^0]: <About RoHS> Directive 2002/95/EC, issued by the European Parliament and European Council, limits the use of specific hazardous substances in electrical and electronic devices.

[^1]: S : Standard (basic type), E: EMC filter built-in typ

